organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(2-Chlorophenyl)-1,5-bis(4-chlorophenyl)pentane-1,5-dione

Jerry P. Jasinski,^a* Ray J. Butcher,^b H. S. Yathirajan,^c B. Narayana^d and M. T. Swamy^e

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^eDepartment of Chemistry, Sambhram Institute of technology, Bangalore 560 098, India

Correspondence e-mail: jjasinski@keene.edu

Received 11 November 2007; accepted 14 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 26.4.

In the title compound, $C_{23}H_{17}Cl_3O_2$, the dihedral angles between the 2-chlorophenyl group and the two 4-chlorophenyl groups are 88.9 (3) and 12.9 (2)°, while the angle between the mean planes of the two 4-chlorophenyl groups is 77.9 (5)°. The crystal packing is stabilized by intermolecular $C-H\cdots O$ interactions between an H atom from each of the two 4chlorophenyl groups and a ketone O atom in neighboring molecules, which link the molecules into chains diagonally along the *ac* plane of the unit cell. Additional intermolecular $\pi-\pi$ stacking interactions occur between adjacent 2-chlorophenyl rings as well as between one of the 4-chlorophenyl rings and a 2-chlorophenyl ring, the distances between the centroids of interacting rings being 3.931 (6) and 3.9915 (4) Å, respectively.

Related literature

For related structures, see: Insuasty *et al.* (2006); Teh *et al.* (2006); Huang *et al.* (2006); Qiu *et al.* (2006*a,b*); Butcher *et al.* (2007); Yathirajan *et al.* (2006, 2007). For related literature, see: Krohnke *et al.* (1976): Hirsch & Bailey, (1978).

Experimental

Crystal data

C ₂₃ H ₁₇ Cl ₃ O ₂	$\gamma = 77.656 \ (12)^{\circ}$
$M_r = 431.72$	V = 1011.9 (4) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 7.1717 (8) Å	Mo $K\alpha$ radiation
b = 7.7000 (15) Å	$\mu = 0.47 \text{ mm}^{-1}$
c = 18.901 (6) Å	$T = 296 { m K}$
$\alpha = 85.88 \ (2)^{\circ}$	$0.45 \times 0.39 \times 0.28 \text{ mm}$
$\beta = 83.518 \ (15)^{\circ}$	

14729 measured reflections 6690 independent reflections

 $R_{\rm int} = 0.024$

3147 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Gemini R CCD
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2007)
$T_{\rm min} = 0.712, T_{\rm max} = 0.877$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 253 parameters $wR(F^2) = 0.118$ H-atom parameters constrainedS = 0.93 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 6690 reflections $\Delta \rho_{min} = -0.33$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7A - H7AA \cdots O1A^{i}$	0.93	2.50	3.306 (2)	145
$C7B - H7BA \cdots O1B^{ii}$	0.93	2.51	3.2917 (17)	142
	(**)			

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: *CrysAlisPro* (Oxford Diffraction, 2007); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

MTS thanks the Sambhram Institute of Technology for use of their research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2485).

References

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, 03330.
- Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.
- Huang, X.-Q., Tan, Y.-X., Dou, J.-M., Li, D.-C. & Zhang, C.-S. (2006). Acta Cryst. E62, 05257–05258.
- Insuasty, B., Torres, H., Cobo, J., Low, J. N. & Glidewell, C. (2006). *Acta Cryst.* C62, 039–041.
- Krohnke, F. (1976). Synthesis, pp. 1–24.

Oxford Diffraction (2007). *CrysAlisPro* and *CrysAlis RED*. Versions 1.171.31.8. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2006a). Acta Cryst. E62, o1826–o1827.
 Qiu, X.-Y., Yang, S., Liu, W.-S. & Zhu, H.-L. (2006b). Acta Cryst. E62, o2533–o2534.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Teh, J. B.-J., Patil, P. S., Fun, H.-K., Dharmaprakash, S. M., Razak, I. A. & Kalluraya, B. (2006). Acta Cryst. E62, 05024–05026.
- Yathirajan, H. S., Malte, K., Narayana, B., Sreevidya, T. V. & Bolte, M. (2007). Acta Cryst. E63, 0228–0229.
- Yathirajan, H. S., Sarojini, B. K., Ashalatha, B. V., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, 04554–04555.

Acta Cryst. (2007). E63, o4808-o4809 [doi:10.1107/S1600536807059089]

3-(2-Chlorophenyl)-1,5-bis(4-chlorophenyl)pentane-1,5-dione

J. P. Jasinski, R. J. Butcher, H. S. Yathirajan, B. Narayana and M. T. Swamy

Comment

1,5-Diketones are important synthetic intermediates and starting materials in the synthesis of many heterocyclic compounds (Hirsch & Bailey, 1978; Krohnke, 1976). The structures of related compounds *viz.*, 1,5-bis(4-chlorophenyl)-3-(2chloroquinolin-3-yl)pentane-1,5-dione (Insuasty *et al.* 2006), 1,5-(4-dichlorophenyl)-3-(2,5-dimethoxyphenyl)pentane-1,5dione (Teh *et al.* 2006), 3-(2-furyl)-1,5-bis(4-methylphenyl)pentane-1,5-dione (Huang *et al.* 2006), 1,5-bis(4-chlorophenyl)-3-(4-pyridyl)pentane-1,5dione (Qiu *et al.* 2006*a*), 3-(3-chlorophenyl)-1,5-bis(4-nitrophenyl)pentane-1,5-dione (Qiu *et al.* 2006*b*), 1,5-bis (3-bromothien-2-yl) -3- (2,3,5-trichlorophenyl)pentane-1,5-dione, (Butcher *et al.* 2007), 1,5-bis(3-bromo-2-thienyl)-3-(3-nitrophenyl)pentane-1,5-dione (Yathirajan *et al.* 2006), 1,5-bis(4-bromophenyl)-3-(3-nitrophenyl)pentane-1,5-dione, (Yathirajan *et al.* 2007) have been reported. A new 1,5-dione, (I), C₂₃H₁₇Cl₃O₂ was synthesized and the crystal structure is reported here.

In the title compound, $C_{23}H_{17}Cl_{3}O_2$, the dihedral angles between the 2-chlorophenyl group and the two 4-chlorophenyl groups are 88.9 (3) and 12.9 (2)°, while the angle between the mean planes of the two 4-chlorophenyl groups is 77.9 (5)° (Fig. 1). The crystal packing is stabilized by intermolecular C–H···O interactions between a hydrogen atom from each of the two the two 4-chlorophenyl groups and its nearby ketone oxygen in neighboring molecules which link the molecules into chains diagonally and oblique along the *ac* plane of the unit cell (Fig. 2). Additional intermolecular π - π stacking interactions occur between adjacent 2-chlorophenyl rings [*Cg*₃ = center of gravity of the 4-chlorophenyl ring (C3B–C8B); *Cg*₃···*Cg*₃ = 3.931 (6) Å; 1 - x, 1 - y, -z] as well as between one of the 4-chlorophenyl rings and a 2-chlorophenyl ring [*Cg*₁ = center of gravity of the 2-chlorophenyl ring (C1–C6); *Cg*₁···*Cg*₃ = 3.931 (6) Å; x, -1 + y, z].

Experimental

4-Chloroacetophenone (1.54 g, 0.1 mol) in ethanol (30 ml) was mixed with 2-chlorobenzaldehyde (0.7 g, 0.05 mol) and the mixture was treated with an aqueous solution of sodium hydroxide (5 ml, 30%) (Fig. 3). This mixture was stirred well and left for 12 h. The resulting crude solid mass was collected by filtration, washed, dried and recrystallized from toluene (yield 85%., m.p.: 401 K). The initially formed 1-(4-methoxyphenyl)-3-(2-chlorophenyl)prop-2-en-1-one, underwent Michael addition, resulting in the formation of the novel title compound (I). Analysis found: C 63.90, H 3.94%; C₂₃H₁₇Cl₃O₂ requires: C 63.98, H 3.97%.

Refinement

The H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93 to 0.98 Å, and with $U_{iso}(H) = 1.19$ or $1.21U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate intramolecular C—H···O hydrogen bonds.

Fig. 3. Synthetic scheme for $C_{23}H_{17}Cl_3O_2$.

3-(2-Chlorophenyl)-1,5-bis(4-chlorophenyl)pentane-1,5-dione

Crystal data	
C ₂₃ H ₁₇ Cl ₃ O ₂	Z = 2
$M_r = 431.72$	$F_{000} = 444$
Triclinic, PT	$D_{\rm x} = 1.417 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.1717 (8) Å	Cell parameters from 4806 reflections
b = 7.7000 (15) Å	$\theta = 4.5 - 32.6^{\circ}$
c = 18.901 (6) Å	$\mu = 0.47 \text{ mm}^{-1}$
$\alpha = 85.88 \ (2)^{\circ}$	<i>T</i> = 296 K
$\beta = 83.518 \ (15)^{\circ}$	Prism, pale yellow
$\gamma = 77.656 \ (12)^{\circ}$	$0.45\times0.39\times0.28\ mm$
$V = 1011.9 (4) \text{ Å}^3$	

Data collection

Oxford Diffraction Gemini R CCD diffractometer	6690 independent reflections
Radiation source: fine-focus sealed tube	3147 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 32.7^{\circ}$
T = 296 K	$\theta_{\min} = 4.6^{\circ}$
ϕ and ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -11 \rightarrow 11$
$T_{\min} = 0.712, T_{\max} = 0.877$	$l = -28 \rightarrow 25$
14729 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0598P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{\text{max}} = 0.001$
6690 reflections	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
253 parameters	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$
Defense of the local standard and the standard standard	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl	0.99371 (5)	0.01789 (6)	0.20354 (3)	0.07076 (15)
Cl1A	-0.20263 (8)	0.29570 (8)	0.60074 (3)	0.09081 (19)
Cl1B	0.84843 (6)	0.85651 (6)	0.01648 (3)	0.07311 (16)
O1A	0.59359 (15)	0.16616 (18)	0.37462 (6)	0.0739 (4)

O1B	0.22035 (13)	0.35855 (15)	0.14247 (6)	0.0630 (3)
С	0.55268 (17)	0.10895 (17)	0.23407 (7)	0.0392 (3)
H0A	0.6438	0.1859	0.2371	0.047*
C1	0.65483 (18)	-0.08305 (17)	0.24669 (7)	0.0407 (3)
C2	0.85377 (19)	-0.13735 (19)	0.23327 (7)	0.0464 (3)
C3	0.9461 (2)	-0.3130 (2)	0.24106 (9)	0.0629 (4)
H3A	1.0786	-0.3451	0.2314	0.075*
C4	0.8422 (3)	-0.4397 (2)	0.26302 (10)	0.0718 (5)
H4A	0.9041	-0.5583	0.2685	0.086*
C5	0.6468 (3)	-0.3926 (2)	0.27701 (10)	0.0725 (5)
H5A	0.5758	-0.4785	0.2925	0.087*
C6	0.5560 (2)	-0.2157 (2)	0.26790 (8)	0.0572 (4)
H6A	0.4231	-0.1855	0.2765	0.069*
C1A	0.37939 (18)	0.16621 (19)	0.28840 (7)	0.0445 (3)
H1AA	0.3097	0.2827	0.2731	0.053*
H1AB	0.2945	0.0835	0.2886	0.053*
C2A	0.4284 (2)	0.17464 (19)	0.36322 (7)	0.0455 (3)
C3A	0.26998 (19)	0.19997 (18)	0.42202 (7)	0.0438 (3)
C4A	0.3106 (2)	0.2179 (2)	0.49019 (8)	0.0632 (4)
H4AA	0.4371	0.2101	0.4990	0.076*
C5A	0.1676 (3)	0.2470 (3)	0.54553 (9)	0.0712 (5)
H5AA	0.1968	0.2592	0.5914	0.085*
C6A	-0.0180 (2)	0.2578 (2)	0.53224 (8)	0.0585 (4)
C7A	-0.0643 (2)	0.2376 (2)	0.46536 (9)	0.0646 (4)
H7AA	-0.1909	0.2435	0.4571	0.078*
C8A	0.0818 (2)	0.2081 (2)	0.41048 (8)	0.0549 (4)
H8AA	0.0525	0.1936	0.3649	0.066*
C1B	0.49133 (18)	0.12994 (18)	0.15762 (7)	0.0421 (3)
H1BA	0.6040	0.0926	0.1245	0.051*
H1BB	0.4045	0.0509	0.1539	0.051*
C2B	0.39471 (18)	0.31623 (18)	0.13577 (7)	0.0423 (3)
C3B	0.51050 (18)	0.44822 (18)	0.10689 (7)	0.0394 (3)
C4B	0.41837 (19)	0.61665 (19)	0.08326 (7)	0.0446 (3)
H4BA	0.2851	0.6452	0.0864	0.054*
C5B	0.5207 (2)	0.74129 (19)	0.05538 (8)	0.0499 (4)
H5BA	0.4577	0.8529	0.0391	0.060*
C6B	0.7180 (2)	0.69894 (19)	0.05180 (7)	0.0462 (3)
C7B	0.81408 (19)	0.5351 (2)	0.07542 (8)	0.0496 (4)
H7BA	0.9473	0.5092	0.0734	0.060*
C8B	0.71080 (19)	0.40966 (19)	0.10217 (8)	0.0473 (3)
H8BA	0.7751	0.2975	0.1174	0.057*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.03547 (19)	0.0776 (3)	0.0992 (4)	-0.01499 (18)	-0.0055 (2)	0.0040 (2)
Cl1A	0.0917 (4)	0.1141 (4)	0.0619 (3)	-0.0255 (3)	0.0284 (3)	-0.0169 (3)
Cl1B	0.0674 (3)	0.0560 (3)	0.0960 (4)	-0.0229 (2)	0.0084 (2)	0.0000 (2)

O1A	0.0434 (6)	0.1231 (11)	0.0596 (7)	-0.0194 (6)	-0.0097 (5)	-0.0207 (7)
O1B	0.0355 (5)	0.0703 (7)	0.0783 (8)	-0.0073 (5)	-0.0019 (5)	0.0118 (6)
С	0.0321 (6)	0.0422 (7)	0.0430 (7)	-0.0085 (5)	-0.0022 (5)	-0.0012 (6)
C1	0.0408 (7)	0.0434 (7)	0.0380 (7)	-0.0088 (6)	-0.0050 (6)	-0.0014 (6)
C2	0.0412 (7)	0.0518 (8)	0.0449 (8)	-0.0059 (6)	-0.0061 (6)	-0.0035 (6)
C3	0.0597 (9)	0.0604 (10)	0.0619 (10)	0.0079 (8)	-0.0141 (8)	-0.0075 (8)
C4	0.0958 (14)	0.0450 (9)	0.0655 (11)	0.0078 (9)	-0.0128 (10)	-0.0028 (8)
C5	0.0992 (14)	0.0477 (10)	0.0722 (12)	-0.0243 (9)	-0.0028 (10)	0.0048 (8)
C6	0.0560 (9)	0.0520 (9)	0.0626 (10)	-0.0152 (7)	0.0024 (8)	0.0025 (7)
C1A	0.0370 (6)	0.0525 (8)	0.0426 (8)	-0.0044 (6)	-0.0054 (6)	-0.0062 (6)
C2A	0.0436 (7)	0.0503 (8)	0.0434 (8)	-0.0097 (6)	-0.0063 (6)	-0.0047 (6)
C3A	0.0489 (8)	0.0460 (8)	0.0377 (8)	-0.0106 (6)	-0.0078 (6)	-0.0028 (6)
C4A	0.0553 (9)	0.0898 (12)	0.0461 (9)	-0.0146 (9)	-0.0080 (8)	-0.0116 (8)
C5A	0.0819 (12)	0.0957 (14)	0.0375 (9)	-0.0184 (10)	-0.0064 (9)	-0.0131 (8)
C6A	0.0639 (10)	0.0621 (10)	0.0472 (9)	-0.0140 (8)	0.0086 (8)	-0.0065 (7)
C7A	0.0496 (9)	0.0892 (13)	0.0559 (10)	-0.0167 (8)	-0.0001 (8)	-0.0095 (9)
C8A	0.0502 (8)	0.0758 (11)	0.0395 (8)	-0.0145 (7)	-0.0037 (7)	-0.0059 (7)
C1B	0.0411 (7)	0.0465 (8)	0.0381 (7)	-0.0089 (6)	0.0003 (6)	-0.0046 (6)
C2B	0.0365 (7)	0.0524 (8)	0.0360 (7)	-0.0047 (6)	-0.0034 (6)	-0.0022 (6)
C3B	0.0367 (6)	0.0482 (8)	0.0317 (7)	-0.0042 (6)	-0.0047 (5)	-0.0030 (6)
C4B	0.0388 (7)	0.0464 (8)	0.0463 (8)	-0.0010 (6)	-0.0074 (6)	-0.0056 (6)
C5B	0.0518 (8)	0.0411 (8)	0.0531 (9)	0.0001 (6)	-0.0081 (7)	-0.0029 (7)
C6B	0.0498 (8)	0.0462 (8)	0.0434 (8)	-0.0130 (6)	-0.0006 (6)	-0.0042 (6)
C7B	0.0361 (7)	0.0604 (9)	0.0500 (9)	-0.0069 (6)	-0.0039 (6)	0.0025 (7)
C8B	0.0377 (7)	0.0495 (8)	0.0496 (8)	-0.0004 (6)	-0.0049 (6)	0.0066 (6)

Geometric parameters (Å, °)

Cl—C2	1.7439 (15)	C3A—C8A	1.379 (2)
Cl1A—C6A	1.7368 (16)	C4A—C5A	1.374 (2)
Cl1B—C6B	1.7380 (15)	C4A—H4AA	0.9300
O1A—C2A	1.2156 (16)	C5A—C6A	1.366 (2)
O1B—C2B	1.2173 (15)	С5А—Н5АА	0.9300
C—C1	1.5183 (18)	С6А—С7А	1.370 (2)
C—C1A	1.5285 (18)	C7A—C8A	1.382 (2)
C—C1B	1.5450 (19)	С7А—Н7АА	0.9300
С—Н0А	0.9800	С8А—Н8АА	0.9300
C1—C6	1.3759 (19)	C1B—C2B	1.5042 (19)
C1—C2	1.3976 (18)	C1B—H1BA	0.9700
C2—C3	1.379 (2)	C1B—H1BB	0.9700
C3—C4	1.364 (3)	C2B—C3B	1.4831 (19)
С3—НЗА	0.9300	C3B—C4B	1.3910 (19)
C4—C5	1.370 (3)	C3B—C8B	1.3972 (18)
C4—H4A	0.9300	C4B—C5B	1.371 (2)
C5—C6	1.386 (2)	C4B—H4BA	0.9300
С5—Н5А	0.9300	C5B—C6B	1.378 (2)
С6—Н6А	0.9300	С5В—Н5ВА	0.9300
C1A—C2A	1.504 (2)	С6В—С7В	1.372 (2)
C1A—H1AA	0.9700	C7B—C8B	1.374 (2)

0.0200
0.9300
119.09 (15)
120.5
120.5
121.53 (14)
120.38 (13)
118.08 (13)
118.44 (15)
120.8
120.8
121.32(14)
119.3
119.3
117.5
108 7
108.7
108.7
108.7
108.7
107.0
120.07 (12)
119.50 (13)
120.43 (11)
118.21 (13)
119.49 (11)
122.30 (12)
121.13 (12)
119.4
119.4
119.10 (13)
120.5
120.5
121.52 (13)
119.20 (11)
119.28 (11)
119.09 (13)
120.5
120.5
120.94 (13)
119.5
119.5
1.0 (3)
-179.63 (14)
-0.9 (3)
179.71 (13)
1.4 (2)
-177.85 (15)

C6—C1—C2—Cl	178.12 (11)	C6A—C7A—C8A—C3A	-0.3 (3)
C—C1—C2—Cl	1.90 (18)	C1—C—C1B—C2B	-177.57 (10)
C1—C2—C3—C4	-0.5 (2)	C1A—C—C1B—C2B	58.46 (15)
Cl—C2—C3—C4	-178.91 (13)	C-C1B-C2B-O1B	-95.04 (15)
C2—C3—C4—C5	0.3 (3)	CC1BC2BC3B	84.40 (14)
C3—C4—C5—C6	0.7 (3)	O1B—C2B—C3B—C4B	-4.2 (2)
C2-C1-C6-C5	1.3 (2)	C1B-C2B-C3B-C4B	176.39 (11)
C-C1-C6-C5	177.49 (14)	O1B-C2B-C3B-C8B	176.04 (13)
C4—C5—C6—C1	-1.5 (3)	C1B—C2B—C3B—C8B	-3.40 (19)
C1—C—C1A—C2A	67.11 (15)	C8B—C3B—C4B—C5B	0.7 (2)
C1B—C—C1A—C2A	-171.94 (11)	C2B—C3B—C4B—C5B	-179.14 (13)
C—C1A—C2A—O1A	12.0 (2)	C3B—C4B—C5B—C6B	-0.9 (2)
C—C1A—C2A—C3A	-170.18 (12)	C4B—C5B—C6B—C7B	0.1 (2)
O1A—C2A—C3A—C4A	1.4 (2)	C4B—C5B—C6B—C11B	179.99 (11)
C1A—C2A—C3A—C4A	-176.42 (14)	C5B—C6B—C7B—C8B	1.1 (2)
O1A—C2A—C3A—C8A	-179.32 (16)	Cl1B—C6B—C7B—C8B	-178.87 (11)
C1A—C2A—C3A—C8A	2.9 (2)	C6B—C7B—C8B—C3B	-1.3 (2)
C8A—C3A—C4A—C5A	-1.4 (3)	C4B—C3B—C8B—C7B	0.5 (2)
C2A—C3A—C4A—C5A	177.96 (16)	C2B—C3B—C8B—C7B	-179.73 (13)
C3A—C4A—C5A—C6A	0.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C7A—H7AA···O1A ⁱ	0.93	2.50	3.306 (2)	145
C7B—H7BA···O1B ⁱⁱ	0.93	2.51	3.2917 (17)	142
Symmetry codes: (i) <i>x</i> -1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> .				

С h

